Integral Equations and the First Passage Time of Brownian Motions
نویسنده
چکیده
The first passage time problem for Brownian motions hitting a barrier has been extensively studied in the literature. In particular, many incarnations of integral equations which link the density of the hitting time to the equation for the barrier itself have appeared. Most interestingly, Peskir (2002b) demonstrates that a master integral equation can be used to generate a countable number of new equations via differentiation or integration by parts. In this article, we generalize Peskir’s results and provide a more powerful unifying framework for generating integral equations through a new class of martingales. We obtain a continuum of Volterra type integral equations of the first kind and prove uniqueness for a subclass. Furthermore, through the integral equations, we demonstrate how certain functional transforms of the boundary affect the density function. Finally, we demonstrate a fundamental connection between the Volterra integral equations and a class of Fredholm integral equations.
منابع مشابه
A wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Stochastic Volterra Equations in Banach Spaces and Stochastic Partial Differential Equations*
In this paper, we first study the existence-uniqueness and large deviation estimate of solutions for stochastic Volterra integral equations with singular kernels in 2-smooth Banach spaces. Then, we apply them to a large class of semilinear stochastic partial differential equations (SPDE) driven by Brownian motions as well as by fractional Brownian motions, and obtain the existence of unique max...
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملAsymptotic Results for Super-brownian Motions and Semilinear Differential Equations
Limit laws for three-dimensional super-Brownian motion are derived, conditioned on survival up to a large time. A large deviation principle is proved for the joint behavior of occupation times and their difference. These are done via analyzing the generating function and exploiting a connection between probability and differential/integral equations.
متن کامل